Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Thorax ; 77(5): 497-504, 2022 05.
Article in English | MEDLINE | ID: covidwho-2319349

ABSTRACT

BACKGROUND: The QCovid algorithm is a risk prediction tool that can be used to stratify individuals by risk of COVID-19 hospitalisation and mortality. Version 1 of the algorithm was trained using data covering 10.5 million patients in England in the period 24 January 2020 to 30 April 2020. We carried out an external validation of version 1 of the QCovid algorithm in Scotland. METHODS: We established a national COVID-19 data platform using individual level data for the population of Scotland (5.4 million residents). Primary care data were linked to reverse-transcription PCR (RT-PCR) virology testing, hospitalisation and mortality data. We assessed the performance of the QCovid algorithm in predicting COVID-19 hospitalisations and deaths in our dataset for two time periods matching the original study: 1 March 2020 to 30 April 2020, and 1 May 2020 to 30 June 2020. RESULTS: Our dataset comprised 5 384 819 individuals, representing 99% of the estimated population (5 463 300) resident in Scotland in 2020. The algorithm showed good calibration in the first period, but systematic overestimation of risk in the second period, prior to temporal recalibration. Harrell's C for deaths in females and males in the first period was 0.95 (95% CI 0.94 to 0.95) and 0.93 (95% CI 0.92 to 0.93), respectively. Harrell's C for hospitalisations in females and males in the first period was 0.81 (95% CI 0.80 to 0.82) and 0.82 (95% CI 0.81 to 0.82), respectively. CONCLUSIONS: Version 1 of the QCovid algorithm showed high levels of discrimination in predicting the risk of COVID-19 hospitalisations and deaths in adults resident in Scotland for the original two time periods studied, but is likely to need ongoing recalibration prospectively.


Subject(s)
COVID-19 , Adult , Algorithms , Calibration , Cohort Studies , Female , Hospitalization , Humans , Male , Scotland/epidemiology
2.
Lancet Respir Med ; 10(12): 1129-1136, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2309293

ABSTRACT

BACKGROUND: Evidence suggests that the SARS-CoV-2 omicron (B.1·1.529) is associated with lower risks of adverse outcomes than the delta (B.1.617.2) variant among the general population. However, little is known about outcomes after omicron infection in pregnancy. We aimed to assess and compare short-term pregnancy outcomes after SARS-CoV-2 delta and omicron infection in pregnancy. METHODS: We did a national population-based cohort study of women who had SARS-CoV-2 infection in pregnancy between May 17, 2021, and Jan 31, 2022. The primary maternal outcome was admission to critical care within 21 days of infection or death within 28 days of date of infection. Pregnancy outcomes were preterm birth and stillbirth within 28 days of infection. Neonatal outcomes were death within 28 days of birth, and low Apgar score (<7 of 10, for babies born at term) or neonatal SARS-CoV-2 infection in births occurring within 28 days of maternal infection. We used periods when variants were dominant in the general Scottish population, based on 50% or more of cases being S-gene positive (delta variant, from May 17 to Dec 14, 2021) or S-gene negative (omicron variant, from Dec 15, 2021, to Jan 31, 2022) as surrogates for variant infections. Analyses used logistic regression, adjusting for maternal age, deprivation quintile, ethnicity, weeks of gestation, and vaccination status. Sensitivity analyses included restricting the analysis to those with first confirmed SARS-CoV-2 infection and using periods when delta or omicron had 90% or more predominance. FINDINGS: Between May 17, 2021, and Jan 31, 2022, there were 9923 SARS-CoV-2 infections in 9823 pregnancies, in 9817 women in Scotland. Compared with infections in the delta-dominant period, SARS-CoV-2 infections in pregnancy in the omicron-dominant period were associated with lower maternal critical care admission risk (0·3% [13 of 4968] vs 1·8% [89 of 4955]; adjusted odds ratio 0·25, 95% CI 0·14-0·44) and lower preterm birth within 28 days of infection (1·8% [37 of 2048] vs 4·2% [98 of 2338]; 0·57, 95% CI 0·38-0·87). There were no maternal deaths within 28 days of infection. Estimates of low Apgar scores were imprecise due to low numbers (5 [1·2%] of 423 with omicron vs 11 [2·1%] of 528 with delta, adjusted odds ratio 0·72, 0·23-2·32). There were fewer stillbirths in the omicron-dominant period than in the delta-dominant period (4·3 [2 of 462] per 1000 births vs 20·3 [13 of 639] per 1000) and no neonatal deaths during the omicron-dominant period (0 [0 of 460] per 1000 births vs 6·3 [4 of 626] per 1000 births), thus numbers were too small to support adjusted analyses. Rates of neonatal infection were low in births within 28 days of maternal SARS-CoV-2 infection, with 11 cases of neonatal SARS-CoV-2 in the delta-dominant period, and 1 case in the omicron-dominant period. Of the 15 stillbirths, 12 occurred in women who had not received two or more doses of COVID-19 vaccination at the time of SARS-CoV-2 infection in pregnancy. All 12 cases of neonatal SARS-CoV-2 infection occurred in women who had not received two or more doses of vaccine at the time of maternal infection. Findings in sensitivity analyses were similar to those in the main analyses. INTERPRETATION: Pregnant women infected with SARS-CoV-2 were substantially less likely to have a preterm birth or maternal critical care admission during the omicron-dominant period than during the delta-dominant period. FUNDING: Wellcome Trust, Tommy's charity, Medical Research Council, UK Research and Innovation, Health Data Research UK, National Core Studies-Data and Connectivity, Public Health Scotland, Scottish Government Health and Social Care, Scottish Government Chief Scientist Office, National Research Scotland.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Premature Birth , Infant, Newborn , Pregnancy , Female , Humans , SARS-CoV-2 , Pregnancy Outcome/epidemiology , Cohort Studies , Stillbirth/epidemiology , Premature Birth/epidemiology , COVID-19 Vaccines , Pregnancy Complications, Infectious/epidemiology
3.
Arch Dis Child Fetal Neonatal Ed ; 108(4): 367-372, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2193641

ABSTRACT

OBJECTIVES: To examine neonates in Scotland aged 0-27 days with SARS-CoV-2 infection confirmed by viral testing; the risk of confirmed neonatal infection by maternal and infant characteristics; and hospital admissions associated with confirmed neonatal infections. DESIGN: Population-based cohort study. SETTING AND POPULATION: All live births in Scotland, 1 March 2020-31 January 2022. RESULTS: There were 141 neonates with confirmed SARS-CoV-2 infection over the study period, giving an overall infection rate of 153 per 100 000 live births (141/92 009, 0.15%). Among infants born to women with confirmed infection around the time of birth, the confirmed neonatal infection rate was 1812 per 100 000 live births (15/828, 1.8%). Two-thirds (92/141, 65.2%) of neonates with confirmed infection had an associated admission to neonatal or (more commonly) paediatric care. Six of these babies (6/92, 6.5%) were admitted to neonatal and/or paediatric intensive care; however, none of these six had COVID-19 recorded as their main diagnosis. There were no neonatal deaths among babies with confirmed infection. IMPLICATIONS AND RELEVANCE: Confirmed neonatal SARS-CoV-2 infection was uncommon over the first 23 months of the pandemic in Scotland. Secular trends in the neonatal confirmed infection rate broadly followed those seen in the general population, although at a lower level. Maternal confirmed infection at birth was associated with an increased risk of neonatal confirmed infection. Two-thirds of neonates with confirmed infection had an associated admission to hospital, with resulting implications for the baby, family and services, although their outcomes were generally good. Ascertainment of confirmed infection depends on the extent of testing, and this is likely to have varied over time and between groups: the extent of unconfirmed infection is inevitably unknown.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Pregnancy , Infant, Newborn , Infant , Child , Humans , Female , COVID-19/diagnosis , COVID-19/epidemiology , Pregnancy Complications, Infectious/epidemiology , Pregnancy Complications, Infectious/diagnosis , SARS-CoV-2 , Cohort Studies , Scotland/epidemiology , Pregnancy Outcome/epidemiology
5.
Nat Commun ; 13(1): 6124, 2022 Oct 17.
Article in English | MEDLINE | ID: covidwho-2077055

ABSTRACT

Data on the safety of COVID-19 vaccines in early pregnancy are limited. We conducted a national, population-based, matched cohort study assessing associations between COVID-19 vaccination and miscarriage prior to 20 weeks gestation and, separately, ectopic pregnancy. We identified women in Scotland vaccinated between 6 weeks preconception and 19 weeks 6 days gestation (for miscarriage; n = 18,780) or 2 weeks 6 days gestation (for ectopic; n = 10,570). Matched, unvaccinated women from the pre-pandemic and, separately, pandemic periods were used as controls. Here we show no association between vaccination and miscarriage (adjusted Odds Ratio [aOR], pre-pandemic controls = 1.02, 95% Confidence Interval [CI] = 0.96-1.09) or ectopic pregnancy (aOR = 1.13, 95% CI = 0.92-1.38). We undertook additional analyses examining confirmed SARS-CoV-2 infection as the exposure and similarly found no association with miscarriage or ectopic pregnancy. Our findings support current recommendations that vaccination remains the safest way for pregnant women to protect themselves and their babies from COVID-19.


Subject(s)
Abortion, Spontaneous , COVID-19 Vaccines , COVID-19 , Influenza, Human , Pregnancy, Ectopic , Female , Humans , Pregnancy , Abortion, Spontaneous/epidemiology , Cohort Studies , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Influenza, Human/prevention & control , Pregnancy Outcome , SARS-CoV-2 , Vaccination
6.
Lancet ; 400(10360): 1305-1320, 2022 10 15.
Article in English | MEDLINE | ID: covidwho-2069811

ABSTRACT

BACKGROUND: Current UK vaccination policy is to offer future COVID-19 booster doses to individuals at high risk of serious illness from COVID-19, but it is still uncertain which groups of the population could benefit most. In response to an urgent request from the UK Joint Committee on Vaccination and Immunisation, we aimed to identify risk factors for severe COVID-19 outcomes (ie, COVID-19-related hospitalisation or death) in individuals who had completed their primary COVID-19 vaccination schedule and had received the first booster vaccine. METHODS: We constructed prospective cohorts across all four UK nations through linkages of primary care, RT-PCR testing, vaccination, hospitalisation, and mortality data on 30 million people. We included individuals who received primary vaccine doses of BNT162b2 (tozinameran; Pfizer-BioNTech) or ChAdOx1 nCoV-19 (Oxford-AstraZeneca) vaccines in our initial analyses. We then restricted analyses to those given a BNT162b2 or mRNA-1273 (elasomeran; Moderna) booster and had a severe COVID-19 outcome between Dec 20, 2021, and Feb 28, 2022 (when the omicron (B.1.1.529) variant was dominant). We fitted time-dependent Poisson regression models and calculated adjusted rate ratios (aRRs) and 95% CIs for the associations between risk factors and COVID-19-related hospitalisation or death. We adjusted for a range of potential covariates, including age, sex, comorbidities, and previous SARS-CoV-2 infection. Stratified analyses were conducted by vaccine type. We then did pooled analyses across UK nations using fixed-effect meta-analyses. FINDINGS: Between Dec 8, 2020, and Feb 28, 2022, 16 208 600 individuals completed their primary vaccine schedule and 13 836 390 individuals received a booster dose. Between Dec 20, 2021, and Feb 28, 2022, 59 510 (0·4%) of the primary vaccine group and 26 100 (0·2%) of those who received their booster had severe COVID-19 outcomes. The risk of severe COVID-19 outcomes reduced after receiving the booster (rate change: 8·8 events per 1000 person-years to 7·6 events per 1000 person-years). Older adults (≥80 years vs 18-49 years; aRR 3·60 [95% CI 3·45-3·75]), those with comorbidities (≥5 comorbidities vs none; 9·51 [9·07-9·97]), being male (male vs female; 1·23 [1·20-1·26]), and those with certain underlying health conditions-in particular, individuals receiving immunosuppressants (yes vs no; 5·80 [5·53-6·09])-and those with chronic kidney disease (stage 5 vs no; 3·71 [2·90-4·74]) remained at high risk despite the initial booster. Individuals with a history of COVID-19 infection were at reduced risk (infected ≥9 months before booster dose vs no previous infection; aRR 0·41 [95% CI 0·29-0·58]). INTERPRETATION: Older people, those with multimorbidity, and those with specific underlying health conditions remain at increased risk of COVID-19 hospitalisation and death after the initial vaccine booster and should, therefore, be prioritised for additional boosters, including novel optimised versions, and the increasing array of COVID-19 therapeutics. FUNDING: National Core Studies-Immunity, UK Research and Innovation (Medical Research Council), Health Data Research UK, the Scottish Government, and the University of Edinburgh.


Subject(s)
COVID-19 , Aged , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , England/epidemiology , Female , Humans , Immunization, Secondary , Immunosuppressive Agents , Male , Northern Ireland , Prospective Studies , SARS-CoV-2 , Scotland , Vaccination , Wales/epidemiology
8.
Nat Commun ; 13(1): 4800, 2022 08 15.
Article in English | MEDLINE | ID: covidwho-1991587

ABSTRACT

We investigated thrombocytopenic, thromboembolic and hemorrhagic events following a second dose of ChAdOx1 and BNT162b2 using a self-controlled case series analysis. We used a national prospective cohort with 2.0 million(m) adults vaccinated with two doses of ChAdOx or 1.6 m with BNT162b2. The incidence rate ratio (IRR) for idiopathic thrombocytopenic purpura (ITP) 14-20 days post-ChAdOx1 second dose was 2.14, 95% confidence interval (CI) 0.90-5.08. The incidence of ITP post-second dose ChAdOx1 was 0.59 (0.37-0.89) per 100,000 doses. No evidence of an increased risk of CVST was found for the 0-27 day risk period (IRR 0.83, 95% CI 0.16 to 4.26). However, few (≤5) events arose within this risk period. It is perhaps noteworthy that these events all clustered in the 7-13 day period (IRR 4.06, 95% CI 0.94 to 17.51). No other associations were found for second dose ChAdOx1, or any association for second dose BNT162b2 vaccination. Second dose ChAdOx1 vaccination was associated with increased borderline risks of ITP and CVST events. However, these events were rare thus providing reassurance about the safety of these vaccines. Further analyses including more cases are required to determine more precisely the risk profile for ITP and CVST after a second dose of ChAdOx1 vaccine.


Subject(s)
BNT162 Vaccine , COVID-19 , ChAdOx1 nCoV-19 , Purpura, Thrombocytopenic, Idiopathic , Thromboembolism , Adult , BNT162 Vaccine/adverse effects , COVID-19/epidemiology , COVID-19/prevention & control , ChAdOx1 nCoV-19/adverse effects , Humans , Prospective Studies , Purpura, Thrombocytopenic, Idiopathic/chemically induced , Purpura, Thrombocytopenic, Idiopathic/epidemiology , Scotland , Thromboembolism/chemically induced , Thromboembolism/epidemiology , Vaccination/adverse effects
9.
Lancet Infect Dis ; 22(11): 1577-1586, 2022 11.
Article in English | MEDLINE | ID: covidwho-1977931

ABSTRACT

BACKGROUND: Little is known about vaccine effectiveness over time among adolescents, especially against the SARS-CoV-2 omicron (B.1.1.529) variant. This study assessed the associations between time since two-dose vaccination with BNT162b2 and the occurrence of symptomatic SARS-CoV-2 infection and severe COVID-19 among adolescents in Brazil and Scotland. METHODS: We did test-negative, case-control studies in adolescents aged 12-17 years with COVID-19-related symptoms in Brazil and Scotland. We linked records of SARS-CoV-2 RT-PCR and antigen tests to national vaccination and clinical records. We excluded tests from individuals who did not have symptoms, were vaccinated before the start of the national vaccination programme, received vaccines other than BNT162b2 or a SARS-CoV-2 booster dose of any kind, or had an interval between their first and second dose of fewer than 21 days. Additionally, we excluded negative SARS-CoV-2 tests recorded within 14 days of a previous negative test, negative tests recorded within 7 days after a positive test, any test done within 90 days after a positive test, and tests with missing sex and location information. Cases (SARS-CoV-2 test-positive adolescents) and controls (test-negative adolescents) were drawn from a sample of individuals in whom tests were collected within 10 days of symptom onset. We estimated the adjusted odds ratio and vaccine effectiveness against symptomatic COVID-19 for both countries and against severe COVID-19 (hospitalisation or death) for Brazil across fortnightly periods. FINDINGS: We analysed 503 776 tests from 2 948 538 adolescents in Brazil between Sept 2, 2021, and April 19, 2022, and 127 168 tests from 404 673 adolescents in Scotland between Aug 6, 2021, and April 19, 2022. Vaccine effectiveness peaked at 14-27 days after the second dose in both countries during both waves, and was significantly lower against symptomatic infection during the omicron-dominant period in Brazil (64·7% [95% CI 63·0-66·3]) and in Scotland (82·6% [80·6-84·5]), than it was in the delta-dominant period (80·7% [95% CI 77·8-83·3] in Brazil and 92·8% [85·7-96·4] in Scotland). Vaccine efficacy started to decline from 27 days after the second dose for both countries, reducing to 5·9% (95% CI 2·2-9·4) in Brazil and 50·6% (42·7-57·4) in Scotland at 98 days or more during the omicron-dominant period. In Brazil, protection against severe disease remained above 80% from 28 days after the second dose and was 82·7% (95% CI 68·8-90·4) at 98 days or more after receiving the second dose. INTERPRETATION: We found waning vaccine protection of BNT162b2 against symptomatic COVID-19 infection among adolescents in Brazil and Scotland from 27 days after the second dose. However, protection against severe COVID-19 outcomes remained high at 98 days or more after the second dose in the omicron-dominant period. Booster doses for adolescents need to be considered. FUNDING: UK Research and Innovation (Medical Research Council), Scottish Government, Health Data Research UK BREATHE Hub, Fiocruz, Fazer o Bem Faz Bem programme, Brazilian National Research Council, and Wellcome Trust. TRANSLATION: For the Portuguese translation of the abstract see Supplementary Materials section.


Subject(s)
COVID-19 , Humans , Adolescent , COVID-19/epidemiology , COVID-19/prevention & control , Brazil/epidemiology , Case-Control Studies , BNT162 Vaccine , Vaccine Efficacy , SARS-CoV-2
10.
J R Soc Med ; 115(11): 429-438, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1820012

ABSTRACT

OBJECTIVES: COVID-19 has resulted in the greatest disruption to National Health Service (NHS) care in its over 70-year history. Building on our previous work, we assessed the ongoing impact of pandemic-related disruption on provision of emergency and elective hospital-based care across Scotland over the first year of the pandemic. DESIGN: We undertook interrupted time-series analyses to evaluate the impact of ongoing pandemic-related disruption on hospital NHS care provision at national level and across demographics and clinical specialties spanning the period 29 March 2020-28 March 2021. SETTING: Scotland, UK. PARTICIPANTS: Patients receiving hospital care from NHS Scotland. MAIN OUTCOME MEASURES: We used the percentage change of accident and emergency attendances, and emergency and planned hospital admissions during the pandemic compared to the average admission rate for equivalent weeks in 2018-2019. RESULTS: As restrictions were gradually lifted in Scotland after the first lockdown, hospital-based admissions increased approaching pre-pandemic levels. Subsequent tightening of restrictions in September 2020 were associated with a change in slope of relative weekly admissions rate: -1.98% (-2.38, -1.58) in accident and emergency attendance, -1.36% (-1.68, -1.04) in emergency admissions and -2.31% (-2.95, -1.66) in planned admissions. A similar pattern was seen across sex, socioeconomic status and most age groups, except children (0-14 years) where accident and emergency attendance, and emergency admissions were persistently low over the study period. CONCLUSIONS: We found substantial disruption to urgent and planned inpatient healthcare provision in hospitals across NHS Scotland. There is the need for urgent policy responses to address continuing unmet health needs and to ensure resilience in the context of future pandemics.


Subject(s)
COVID-19 , Patient Admission , Child , Humans , Infant, Newborn , Infant , Child, Preschool , Adolescent , Pandemics , State Medicine , COVID-19/epidemiology , Communicable Disease Control , Hospitals , Scotland/epidemiology , Emergency Service, Hospital
11.
J Glob Health ; 12: 05008, 2022.
Article in English | MEDLINE | ID: covidwho-1771702

ABSTRACT

Background: The emergence of the B.1.617.2 Delta variant of concern was associated with increasing numbers of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and COVID-19 hospital admissions. We aim to study national population level SARS-CoV-2 infections and COVID-19 associated hospitalisations by vaccination status to provide insight into the association of vaccination on temporal trends during the time in which the SARS-CoV-2 Delta variant became dominant in Scotland. Methods: We used the Scotland-wide Early Pandemic Evaluation and Enhanced Surveillance (EAVE II) platform, covering the period when Delta was pervasive (May 01 to October 23, 2021). We performed a cohort analysis of every vaccine-eligible individual aged 20 or over from across Scotland. We determined the vaccination coverage, SARS-CoV-2 incidence rate and COVID-19 associated hospitalisations incidence rate. We then stratified those rates by age group, vaccination status (defined as "unvaccinated", "partially vaccinated" (1 dose), or "fully vaccinated" (2 doses)), vaccine type (BNT162b2 or ChAdOx1 nCoV-19), and coexisting conditions known to be associated with severe COVID-19 outcomes. Results: During the follow-up of 4 183 022 individuals, there were 407 405 SARS-CoV-2 positive cases with 10 441 (2.6%) associated with a hospital admission. Those vaccinated with two doses (defined as fully vaccinated in the current study) of either vaccine had lower incidence rates of SARS-CoV-2 infections and much lower incidence rates of COVID-19 associated hospitalisations than those unvaccinated in the Delta era in Scotland. Younger age groups were substantially more likely to get infected. In contrast, older age groups were much more likely to be hospitalised. The incidence rates stratified by coexisting conditions were broadly comparable with the overall age group patterns. Conclusions: This study suggests that national population level vaccination was associated with a reduction in SARS-CoV-2 infections and COVID-19 associated hospitalisation in Scotland throughout the Delta era.


Subject(s)
COVID-19 , Viral Vaccines , Adult , Aged , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , ChAdOx1 nCoV-19 , Hospitalization , Humans , Incidence , SARS-CoV-2 , Vaccination , Young Adult
12.
Lancet Respir Med ; 10(2): 191-198, 2022 02.
Article in English | MEDLINE | ID: covidwho-1641759

ABSTRACT

BACKGROUND: There is an urgent need to inform policy deliberations about whether children with asthma should be vaccinated against SARS-CoV-2 and, if so, which subset of children with asthma should be prioritised. We were asked by the UK's Joint Commission on Vaccination and Immunisation to undertake an urgent analysis to identify which children with asthma were at increased risk of serious COVID-19 outcomes. METHODS: This national incident cohort study was done in all children in Scotland aged 5-17 years who were included in the linked dataset of Early Pandemic Evaluation and Enhanced Surveillance of COVID-19 (EAVE II). We used data from EAVE II to investigate the risk of COVID-19 hospitalisation among children with markers of uncontrolled asthma defined by either previous asthma hospital admission or oral corticosteroid prescription in the previous 2 years. A Cox proportional hazard model was used to derive hazard ratios (HRs) and 95% CIs for the association between asthma and COVID-19 hospital admission, stratified by markers of asthma control (previous asthma hospital admission and number of previous prescriptions for oral corticosteroids within 2 years of the study start date). Analyses were adjusted for age, sex, socioeconomic status, comorbidity, and previous hospital admission. FINDINGS: Between March 1, 2020, and July 27, 2021, 752 867 children were included in the EAVE II dataset, 63 463 (8·4%) of whom had clinician-diagnosed-and-recorded asthma. Of these, 4339 (6·8%) had RT-PCR confirmed SARS-CoV-2 infection. In those with confirmed infection, 67 (1·5%) were admitted to hospital with COVID-19. Among the 689 404 children without asthma, 40 231 (5·8%) had confirmed SARS-CoV-2 infections, of whom 382 (0·9%) were admitted to hospital with COVID-19. The rate of COVID-19 hospital admission was higher in children with poorly controlled asthma than in those with well controlled asthma or without asthma. When using previous hospital admission for asthma as the marker of uncontrolled asthma, the adjusted HR was 6·40 (95% CI 3·27-12·53) for those with poorly controlled asthma and 1·36 (1·02-1·80) for those with well controlled asthma, compared with those with no asthma. When using oral corticosteroid prescriptions as the marker of uncontrolled asthma, the adjusted HR was 3·38 (1·84-6·21) for those with three or more prescribed courses of corticosteroids, 3·53 (1·87-6·67) for those with two prescribed courses of corticosteroids, 1·52 (0·90-2·57) for those with one prescribed course of corticosteroids, and 1·34 (0·98-1·82) for those with no prescribed course, compared with those with no asthma. INTERPRETATION: School-aged children with asthma with previous recent hospital admission or two or more courses of oral corticosteroids are at markedly increased risk of COVID-19 hospital admission and should be considered a priority for vaccinations. This would translate into 9124 children across Scotland and an estimated 109 448 children across the UK. FUNDING: UK Research and Innovation (Medical Research Council), Research and Innovation Industrial Strategy Challenge Fund, Health Data Research UK, and Scottish Government.


Subject(s)
Asthma , COVID-19 , Adolescent , Asthma/complications , Asthma/drug therapy , Asthma/epidemiology , Child , Child, Preschool , Cohort Studies , Hospitalization , Hospitals , Humans , SARS-CoV-2 , Scotland/epidemiology
13.
Lancet ; 399(10319): 25-35, 2022 01 01.
Article in English | MEDLINE | ID: covidwho-1586218

ABSTRACT

BACKGROUND: Reports suggest that COVID-19 vaccine effectiveness is decreasing, but whether this reflects waning or new SARS-CoV-2 variants-especially delta (B.1.617.2)-is unclear. We investigated the association between time since two doses of ChAdOx1 nCoV-19 vaccine and risk of severe COVID-19 outcomes in Scotland (where delta was dominant), with comparative analyses in Brazil (where delta was uncommon). METHODS: In this retrospective, population-based cohort study in Brazil and Scotland, we linked national databases from the EAVE II study in Scotland; and the COVID-19 Vaccination Campaign, Acute Respiratory Infection Suspected Cases, and Severe Acute Respiratory Infection/Illness datasets in Brazil) for vaccination, laboratory testing, clinical, and mortality data. We defined cohorts of adults (aged ≥18 years) who received two doses of ChAdOx1 nCoV-19 and compared rates of severe COVID-19 outcomes (ie, COVID-19 hospital admission or death) across fortnightly periods, relative to 2-3 weeks after the second dose. Entry to the Scotland cohort started from May 19, 2021, and entry to the Brazil cohort started from Jan 18, 2021. Follow-up in both cohorts was until Oct 25, 2021. Poisson regression was used to estimate rate ratios (RRs) and vaccine effectiveness, with 95% CIs. FINDINGS: 1 972 454 adults received two doses of ChAdOx1 nCoV-19 in Scotland and 42 558 839 in Brazil, with longer follow-up in Scotland because two-dose vaccination began earlier in Scotland than in Brazil. In Scotland, RRs for severe COVID-19 increased to 2·01 (95% CI 1·54-2·62) at 10-11 weeks, 3·01 (2·26-3·99) at 14-15 weeks, and 5·43 (4·00-7·38) at 18-19 weeks after the second dose. The pattern of results was similar in Brazil, with RRs of 2·29 (2·01-2·61) at 10-11 weeks, 3·10 (2·63-3·64) at 14-15 weeks, and 4·71 (3·83-5·78) at 18-19 weeks after the second dose. In Scotland, vaccine effectiveness decreased from 83·7% (95% CI 79·7-87·0) at 2-3 weeks, to 75·9% (72·9-78·6) at 14-15 weeks, and 63·7% (59·6-67·4) at 18-19 weeks after the second dose. In Brazil, vaccine effectiveness decreased from 86·4% (85·4-87·3) at 2-3 weeks, to 59·7% (54·6-64·2) at 14-15 weeks, and 42·2% (32·4-50·6) at 18-19 weeks. INTERPRETATION: We found waning vaccine protection of ChAdOx1 nCoV-19 against COVID-19 hospital admissions and deaths in both Scotland and Brazil, this becoming evident within three months of the second vaccine dose. Consideration needs to be given to providing booster vaccine doses for people who have received ChAdOx1 nCoV-19. FUNDING: UK Research and Innovation (Medical Research Council), Scottish Government, Research and Innovation Industrial Strategy Challenge Fund, Health Data Research UK, Fiocruz, Fazer o Bem Faz Bem Programme; Conselho Nacional de Desenvolvimento Científico e Tecnológico, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro. TRANSLATION: For the Portuguese translation of the abstract see Supplementary Materials section.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/mortality , COVID-19/prevention & control , ChAdOx1 nCoV-19/administration & dosage , Vaccine Efficacy , Adolescent , Adult , Aged , Aged, 80 and over , Brazil , Female , Hospitalization , Humans , Immunization, Secondary , Male , Middle Aged , Retrospective Studies , SARS-CoV-2/immunology , Scotland/epidemiology , Time Factors , Vaccination
14.
J R Soc Med ; 115(1): 22-30, 2022 01.
Article in English | MEDLINE | ID: covidwho-1480338

ABSTRACT

OBJECTIVES: We investigated the association between multimorbidity among patients hospitalised with COVID-19 and their subsequent risk of mortality. We also explored the interaction between the presence of multimorbidity and the requirement for an individual to shield due to the presence of specific conditions and its association with mortality. DESIGN: We created a cohort of patients hospitalised in Scotland due to COVID-19 during the first wave (between 28 February 2020 and 22 September 2020) of the pandemic. We identified the level of multimorbidity for the patient on admission and used logistic regression to analyse the association between multimorbidity and risk of mortality among patients hospitalised with COVID-19. SETTING: Scotland, UK. PARTICIPANTS: Patients hospitalised due to COVID-19. MAIN OUTCOME MEASURES: Mortality as recorded on National Records of Scotland death certificate and being coded for COVID-19 on the death certificate or death within 28 days of a positive COVID-19 test. RESULTS: Almost 58% of patients admitted to the hospital due to COVID-19 had multimorbidity. Adjusting for confounding factors of age, sex, social class and presence in the shielding group, multimorbidity was significantly associated with mortality (adjusted odds ratio 1.48, 95%CI 1.26-1.75). The presence of multimorbidity and presence in the shielding patients list were independently associated with mortality but there was no multiplicative effect of having both (adjusted odds ratio 0.91, 95%CI 0.64-1.29). CONCLUSIONS: Multimorbidity is an independent risk factor of mortality among individuals who were hospitalised due to COVID-19. Individuals with multimorbidity could be prioritised when making preventive policies, for example, by expanding shielding advice to this group and prioritising them for vaccination.


Subject(s)
COVID-19/mortality , Hospital Mortality , Hospitalization/statistics & numerical data , Multimorbidity , Adult , Aged , Aged, 80 and over , Cohort Studies , Female , Humans , Male , Middle Aged , SARS-CoV-2 , Scotland/epidemiology , Social Determinants of Health , Sociodemographic Factors
15.
Lancet Respir Med ; 9(12): 1439-1449, 2021 12.
Article in English | MEDLINE | ID: covidwho-1440430

ABSTRACT

BACKGROUND: The UK COVID-19 vaccination programme has prioritised vaccination of those at the highest risk of COVID-19 mortality and hospitalisation. The programme was rolled out in Scotland during winter 2020-21, when SARS-CoV-2 infection rates were at their highest since the pandemic started, despite social distancing measures being in place. We aimed to estimate the frequency of COVID-19 hospitalisation or death in people who received at least one vaccine dose and characterise these individuals. METHODS: We conducted a prospective cohort study using the Early Pandemic Evaluation and Enhanced Surveillance of COVID-19 (EAVE II) national surveillance platform, which contained linked vaccination, primary care, RT-PCR testing, hospitalisation, and mortality records for 5·4 million people (around 99% of the population) in Scotland. Individuals were followed up from receiving their first dose of the BNT162b2 (Pfizer-BioNTech) or ChAdOx1 nCoV-19 (Oxford-AstraZeneca) COVID-19 vaccines until admission to hospital for COVID-19, death, or the end of the study period on April 18, 2021. We used a time-dependent Poisson regression model to estimate rate ratios (RRs) for demographic and clinical factors associated with COVID-19 hospitalisation or death 14 days or more after the first vaccine dose, stratified by vaccine type. FINDINGS: Between Dec 8, 2020, and April 18, 2021, 2 572 008 individuals received their first dose of vaccine-841 090 (32·7%) received BNT162b2 and 1 730 918 (67·3%) received ChAdOx1. 1196 (<0·1%) individuals were admitted to hospital or died due to COVID-19 illness (883 hospitalised, of whom 228 died, and 313 who died due to COVID-19 without hospitalisation) 14 days or more after their first vaccine dose. These severe COVID-19 outcomes were associated with older age (≥80 years vs 18-64 years adjusted RR 4·75, 95% CI 3·85-5·87), comorbidities (five or more risk groups vs less than five risk groups 4·24, 3·34-5·39), hospitalisation in the previous 4 weeks (3·00, 2·47-3·65), high-risk occupations (ten or more previous COVID-19 tests vs less than ten previous COVID-19 tests 2·14, 1·62-2·81), care home residence (1·63, 1·32-2·02), socioeconomic deprivation (most deprived quintile vs least deprived quintile 1·57, 1·30-1·90), being male (1·27, 1·13-1·43), and being an ex-smoker (ex-smoker vs non-smoker 1·18, 1·01-1·38). A history of COVID-19 before vaccination was protective (0·40, 0·29-0·54). INTERPRETATION: COVID-19 hospitalisations and deaths were uncommon 14 days or more after the first vaccine dose in this national analysis in the context of a high background incidence of SARS-CoV-2 infection and with extensive social distancing measures in place. Sociodemographic and clinical features known to increase the risk of severe disease in unvaccinated populations were also associated with severe outcomes in people receiving their first dose of vaccine and could help inform case management and future vaccine policy formulation. FUNDING: UK Research and Innovation (Medical Research Council), Research and Innovation Industrial Strategy Challenge Fund, Scottish Government, and Health Data Research UK.


Subject(s)
BNT162 Vaccine , COVID-19 , ChAdOx1 nCoV-19 , Hospitalization/statistics & numerical data , Adolescent , Adult , Aged , Aged, 80 and over , BNT162 Vaccine/administration & dosage , COVID-19/mortality , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19/administration & dosage , Female , Hospitals , Humans , Male , Middle Aged , Prospective Studies , SARS-CoV-2 , Scotland/epidemiology , Vaccination , Young Adult
17.
Pragmat Obs Res ; 12: 93-104, 2021.
Article in English | MEDLINE | ID: covidwho-1360683

ABSTRACT

INTRODUCTION: Symptoms may persist after the initial phases of COVID-19 infection, a phenomenon termed long COVID. Current knowledge on long COVID has been mostly derived from test-confirmed and hospitalized COVID-19 patients. Data are required on the burden and predictors of long COVID in a broader patient group, which includes both tested and untested COVID-19 patients in primary care. METHODS: This is an observational study using data from Platform C19, a quality improvement program-derived research database linking primary care electronic health record data (EHR) with patient-reported questionnaire information. Participating general practices invited consenting patients aged 18-85 to complete an online questionnaire since 7th August 2020. COVID-19 self-diagnosis, clinician-diagnosis, testing, and the presence and duration of symptoms were assessed via the questionnaire. Patients were considered present with long COVID if they reported symptoms lasting ≥4 weeks. EHR and questionnaire data up till 22nd January 2021 were extracted for analysis. Multivariable regression analyses were conducted comparing demographics, clinical characteristics, and presence of symptoms between patients with long COVID and patients with shorter symptom duration. RESULTS: Long COVID was present in 310/3151 (9.8%) patients with self-diagnosed, clinician-diagnosed, or test-confirmed COVID-19. Only 106/310 (34.2%) long COVID patients had test-confirmed COVID-19. Risk predictors of long COVID were age ≥40 years (adjusted Odds Ratio [AdjOR]=1.49 [1.05-2.17]), female sex (adjOR=1.37 [1.02-1.85]), frailty (adjOR=2.39 [1.29-4.27]), visit to A&E (adjOR=4.28 [2.31-7.78]), and hospital admission for COVID-19 symptoms (adjOR=3.22 [1.77-5.79]). Aches and pain (adjOR=1.70 [1.21-2.39]), appetite loss (adjOR=3.15 [1.78-5.92]), confusion and disorientation (adjOR=2.17 [1.57-2.99]), diarrhea (adjOR=1.4 [1.03-1.89]), and persistent dry cough (adjOR=2.77 [1.94-3.98]) were symptom features statistically more common in long COVID. CONCLUSION: This study reports the factors and symptom features predicting long COVID in a broad primary care population, including both test-confirmed and the previously missed group of COVID-19 patients.

18.
BMJ Open ; 11(8): e048852, 2021 08 10.
Article in English | MEDLINE | ID: covidwho-1352562

ABSTRACT

INTRODUCTION: Evidence from previous pandemics, and the current COVID-19 pandemic, has found that risk of infection/severity of disease is disproportionately higher for ethnic minority groups, and those in lower socioeconomic positions. It is imperative that interventions to prevent the spread of COVID-19 are targeted towards high-risk populations. We will investigate the associations between social characteristics (such as ethnicity, occupation and socioeconomic position) and COVID-19 outcomes and the extent to which characteristics/risk factors might explain observed relationships in Scotland.The primary objective of this study is to describe the epidemiology of COVID-19 by social factors. Secondary objectives are to (1) examine receipt of treatment and prevention of COVID-19 by social factors; (2) quantify ethnic/social differences in adverse COVID-19 outcomes; (3) explore potential mediators of relationships between social factors and SARS-CoV-2 infection/COVID-19 prognosis; (4) examine whether occupational COVID-19 differences differ by other social factors and (5) assess quality of ethnicity coding within National Health Service datasets. METHODS AND ANALYSIS: We will use a national cohort comprising the adult population of Scotland who completed the 2011 Census and were living in Scotland on 31 March 2020 (~4.3 million people). Census data will be linked to the Early Assessment of Vaccine and Anti-Viral Effectiveness II cohort consisting of primary/secondary care, laboratory data and death records. Sensitivity/specificity and positive/negative predictive values will be used to assess coding quality of ethnicity. Descriptive statistics will be used to examine differences in treatment and prevention of COVID-19. Poisson/Cox regression analyses and mediation techniques will examine ethnic and social differences, and drivers of inequalities in COVID-19. Effect modification (on additive and multiplicative scales) between key variables (such as ethnicity and occupation) will be assessed. ETHICS AND DISSEMINATION: Ethical approval was obtained from the National Research Ethics Committee, South East Scotland 02. We will present findings of this study at international conferences, in peer-reviewed journals and to policy-makers.


Subject(s)
COVID-19 , Pandemics , Adult , Ethnicity , Humans , Minority Groups , SARS-CoV-2 , Scotland/epidemiology , Socioeconomic Factors , State Medicine
19.
Lancet Digit Health ; 3(8): e517-e525, 2021 08.
Article in English | MEDLINE | ID: covidwho-1294384

ABSTRACT

BACKGROUND: As the COVID-19 pandemic continues, national-level surveillance platforms with real-time individual person-level data are required to monitor and predict the epidemiological and clinical profile of COVID-19 and inform public health policy. We aimed to create a national dataset of patient-level data in Scotland to identify temporal trends and COVID-19 risk factors, and to develop a novel statistical prediction model to forecast COVID-19-related deaths and hospitalisations during the second wave. METHODS: We established a surveillance platform to monitor COVID-19 temporal trends using person-level primary care data (including age, sex, socioeconomic status, urban or rural residence, care home residence, and clinical risk factors) linked to data on SARS-CoV-2 RT-PCR tests, hospitalisations, and deaths for all individuals resident in Scotland who were registered with a general practice on Feb 23, 2020. A Cox proportional hazards model was used to estimate the association between clinical risk groups and time to hospitalisation and death. A survival prediction model derived from data from March 1 to June 23, 2020, was created to forecast hospital admissions and deaths from October to December, 2020. We fitted a generalised additive spline model to daily SARS-CoV-2 cases over the previous 10 weeks and used this to create a 28-day forecast of the number of daily cases. The age and risk group pattern of cases in the previous 3 weeks was then used to select a stratified sample of individuals from our cohort who had not previously tested positive, with future cases in each group sampled from a multinomial distribution. We then used their patient characteristics (including age, sex, comorbidities, and socioeconomic status) to predict their probability of hospitalisation or death. FINDINGS: Our cohort included 5 384 819 people, representing 98·6% of the entire estimated population residing in Scotland during 2020. Hospitalisation and death among those testing positive for SARS-CoV-2 between March 1 and June 23, 2020, were associated with several patient characteristics, including male sex (hospitalisation hazard ratio [HR] 1·47, 95% CI 1·38-1·57; death HR 1·62, 1·49-1·76) and various comorbidities, with the highest hospitalisation HR found for transplantation (4·53, 1·87-10·98) and the highest death HR for myoneural disease (2·33, 1·46-3·71). For those testing positive, there were decreasing temporal trends in hospitalisation and death rates. The proportion of positive tests among older age groups (>40 years) and those with at-risk comorbidities increased during October, 2020. On Nov 10, 2020, the projected number of hospitalisations for Dec 8, 2020 (28 days later) was 90 per day (95% prediction interval 55-125) and the projected number of deaths was 21 per day (12-29). INTERPRETATION: The estimated incidence of SARS-CoV-2 infection based on positive tests recorded in this unique data resource has provided forecasts of hospitalisation and death rates for the whole of Scotland. These findings were used by the Scottish Government to inform their response to reduce COVID-19-related morbidity and mortality. FUNDING: Medical Research Council, National Institute for Health Research Health Technology Assessment Programme, UK Research and Innovation Industrial Strategy Challenge Fund, Health Data Research UK, Scottish Government Director General Health and Social Care.


Subject(s)
COVID-19 , Forecasting , Hospitalization , Models, Statistical , Adolescent , Adult , Aged , COVID-19/epidemiology , COVID-19/mortality , COVID-19 Nucleic Acid Testing/statistics & numerical data , COVID-19 Nucleic Acid Testing/trends , Child , Child, Preschool , Comorbidity/trends , Female , Humans , Incidence , Infant , Infant, Newborn , Information Storage and Retrieval , Male , Middle Aged , Primary Health Care/statistics & numerical data , Risk Factors , Scotland/epidemiology , Sex Factors
20.
Lancet ; 397(10285): 1646-1657, 2021 05 01.
Article in English | MEDLINE | ID: covidwho-1201750

ABSTRACT

BACKGROUND: The BNT162b2 mRNA (Pfizer-BioNTech) and ChAdOx1 nCoV-19 (Oxford-AstraZeneca) COVID-19 vaccines have shown high efficacy against disease in phase 3 clinical trials and are now being used in national vaccination programmes in the UK and several other countries. Studying the real-world effects of these vaccines is an urgent requirement. The aim of our study was to investigate the association between the mass roll-out of the first doses of these COVID-19 vaccines and hospital admissions for COVID-19. METHODS: We did a prospective cohort study using the Early Pandemic Evaluation and Enhanced Surveillance of COVID-19-EAVE II-database comprising linked vaccination, primary care, real-time reverse transcription-PCR testing, and hospital admission patient records for 5·4 million people in Scotland (about 99% of the population) registered at 940 general practices. Individuals who had previously tested positive were excluded from the analysis. A time-dependent Cox model and Poisson regression models with inverse propensity weights were fitted to estimate effectiveness against COVID-19 hospital admission (defined as 1-adjusted rate ratio) following the first dose of vaccine. FINDINGS: Between Dec 8, 2020, and Feb 22, 2021, a total of 1 331 993 people were vaccinated over the study period. The mean age of those vaccinated was 65·0 years (SD 16·2). The first dose of the BNT162b2 mRNA vaccine was associated with a vaccine effect of 91% (95% CI 85-94) for reduced COVID-19 hospital admission at 28-34 days post-vaccination. Vaccine effect at the same time interval for the ChAdOx1 vaccine was 88% (95% CI 75-94). Results of combined vaccine effects against hospital admission due to COVID-19 were similar when restricting the analysis to those aged 80 years and older (83%, 95% CI 72-89 at 28-34 days post-vaccination). INTERPRETATION: Mass roll-out of the first doses of the BNT162b2 mRNA and ChAdOx1 vaccines was associated with substantial reductions in the risk of hospital admission due to COVID-19 in Scotland. There remains the possibility that some of the observed effects might have been due to residual confounding. FUNDING: UK Research and Innovation (Medical Research Council), Research and Innovation Industrial Strategy Challenge Fund, Health Data Research UK.


Subject(s)
COVID-19 Vaccines , COVID-19/prevention & control , Hospitalization/statistics & numerical data , Mass Vaccination , Pandemics/prevention & control , Adolescent , Adult , Aged , Aged, 80 and over , BNT162 Vaccine , COVID-19/epidemiology , ChAdOx1 nCoV-19 , Female , Humans , Male , Middle Aged , Prospective Studies , Risk Factors , Scotland/epidemiology , Social Class , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL